
15-281 Fall 2023 Lecture Activity

Learning Objectives

• Represent various problems (e.g., search, min/max, rectified linear) as LP/IP

• Explore the connections between different topics

IMPORTANT: Please return the completed activity to the front at the end of class. Write your name and Andrew
ID on the top of the first page. You will get 1 point per full page completed (4 total).

Q1. Cost-Based Search as IP

In this problem we are going to explore how to formulate search problems as Integer Programming problems. For
the sake of simplicity we will be considering the weighted directed graph below (S is the start, and G is the goal):

S

A

B

C

G
3

7

5

4

2

1

6

6

1

We can derive a representation for any path1 in a graph by considering variables to represent edges in the graph
each with domain {0,1}; value 0 if the edge is not in the path and 1 if the edge is in the path. Specifically, define a
binary variable xX→Y if there is an edge X → Y in the graph.

For example, the path S → A → C → G can also be seen as the set of edges {S → A,A → C,C → G}. We can
then define xS→A to be the indicator variable for whether the edge S → A is on the path, xS→B to be the indicator
variable for whether the edge S → B is on the path, and so on. Using this binary representation, S → A → C → G
can be represented as:(

xS→A = 1 xS→B = 0 xA→B = 0 xA→C = 1 xB→C = 0 xB→G = 0 xC→S = 0 xC→G = 1 xG→C = 0
)

If we fix the order of the indicator variables in the order above, the path can be represented as a 9−tuple:
(1, 0, 0, 1, 0, 0, 0, 1, 0)

(a) Answer the following questions below about the representation.

(i) Write the 9−tuple binary representation for the path S → A → B → C → G

Answer:
(1, 0, 1, 0, 1, 0, 0, 1, 0)

(ii) Write the 9−tuple binary representation for the path A → C → S → B

Answer:
(0, 1, 0, 1, 0, 0, 1, 0, 0)

1Note that a “path” is different from a “walk”; for our purpose each node can only appear in the path at most once.

2

(iii) Write the path that corresponds to (0, 0, 1, 0, 1, 0, 0, 0, 0)

Answer:
A → B → C

(b) Note with our binary representation, it is possible to make “paths” that do not start from S and end at G,
and some of the 9−tuples are not even valid paths at all. Consider the constraints on valid paths in this
representation.

From the binary representation itself, it is clear that we need to constrain the indicator variables to be an
integer between 0 and 1 inclusive. To find valid paths from the start to the goal, we need to start by imposing
some additional constraints on the 9−tuples.

(i) Write the constraint(s) (in inequality form) that a valid path in the specific graph above must start at
S. (Hint: What must be true about the values or sums of values of the indicator variables involving S
defined above? Remember that constraints must be linear sums of variables.)

Answer:

xS→A + xS→B ≤ 1

−xS→A − xS→B ≤ −1

xC→S ≤ 0

−xC→S ≤ 0

(ii) Similarly, write the constraint(s) that a valid path must end at G (in inequality form).

Answer:

xC→G + xB→G ≤ 1

−xC→G − xB→G ≤ −1

xG→C ≤ 0

−xG→C ≤ 0

(iii) Write a 9−tuple (binary representation) that satisfies the constraints in (i) and (ii) but does not repre-
sent a valid path from S to G

Answer:
Multiple answers, one possibility is (1, 0, 0, 0, 0, 0, 0, 1, 0)

(c) Let us define a non-terminal node as a node that is neither the defined start node (S) nor the goal node (G).
Note that the constraints in part (b) do not guarantee that all other nodes in the path are non-terminal.

(i) We want to ensure that the path only passes through each non-terminal node (e.g., B) at most once.
Write the constraint(s) that node B does not appear more than once on the path (inequality form).

Answer:

xS→B + xA→B ≤ 1 and correct Cii

OR xB→C + xB→G ≤ 1 and correct Cii

OR both

3

(ii) Finally, to ensure B is non-terminal, we have to make sure that if there is an edge to B in a path, then
there should also be an edge from B to some other node. If there is an edge to B but not from B, then
the path has a dead-end at B. Similarly, if there is an edge from B to another node but no edge to B,
then B is a starting node but not S. Write down the corresponding constraint(s) about B’s non-terminal
position (inequality form).

Answer:

xS→B + xA→B − xB→C − xB→G ≤ 0

−xS→B − xA→B + xB→C + xB→G ≤ 0

(d) We have all the constraints to ensure a valid path (actually we don’t, but for now assume we do). Write the
objective function for the IP search problem representing the graph above. (Hint: the goal of solving this IP
problem is to minimize the objective function that corresponds to the search objective.)

Answer:
3xS→A + 7xS→B + 5xA→B + 4xA→C + 2xB→C + 1xB→G + 1xC→S + 6xC→G + 6xG→C

(e) Let us take a closer look at the representation. As hinted before, the current constraints DO NOT ensure a
valid path for graphs in general.

(i) Come up with a directed graph such that there exists a tuple that passes all the previously mentioned
constraints but does not represent a valid path on the graph. You should be able to construct such an
example with less than 10 edges. The weights of the edges are not important for this question, you may
omit them.

Draw your graph, and give the counterexample tuple. As a reminder, the length of your tuple should be
the same as the number of edges in your graph. Clearly label the correspondence between the elements
in your tuple and the edges on the graph

Answer:

S AG

The invalid representation is (1, 1). Basically anything with a loop outside the path is a valid
counter-example.

4

(ii) Despite the existence of these invalid tuples, they will never be returned by the IP above (as defined by
the previous constraints and objective function) as long as every edge has a positive cost. Briefly explain
why this is the case.

Answer:
Because having an extra cycle will increase the total cost as defined in the objective function.
Therefore it cannot be the optimal solution for the IP.

(f) Define a new search algorithm to be: formulate the search as an IP problem, then run an IP solver (which is
optimal and complete) and return the solution as a path. Is this new search algorithm:

(i) Complete? Yes ⃝ No

(ii) Optimal? Yes ⃝ No

(g) What will happen if we use an LP solver instead of the IP solver (still constraining the binary representations
to be in range [0, 1])? Will the returned solution (value assignments of the binary variables) and/or the object
value be different? If they might differ, give the high-level description of such an example and explain why
they might differ. Otherwise, briefly explain why they will be the same.

Answer:
The returned value assignment might be different if there are multiple paths with the optimal cost. But
the objective value will be the same (the least cost from start to goal) as the IP version is already optimal.

5

Q2. Adversarial Search as IP (Bonus Question)

In this problem2 we are going to explore how to do a similar representation for the adversarial search, specifically
the Minimax. As the Minimax tree consists of different layers of maximizing and minimizing nodes, an intuitive
way to get started is to represent each individual node and put them together.

(a) As shown in the figure below, let us start with a maximizing node with three children. For now, assume that
all the children are just constant values (not other nodes).

Vmax

C1 C2 C3

If we define a variable Vmax to represent the true value of the maxie node (without any pruning), then we can
define the following constraints to represent that the value of the node is greater or equal to all of its children.

C1 − Vmax ≤ 0 C2 − Vmax ≤ 0 C3 − Vmax ≤ 0

These constraints alone do not guarantee that Vmax will end up being the maximum value of its children.
However, we can enforce that with the help of the objective function. Define an objective function such that
with this objective function, the value of Vmax will be equal to the maximum value of its children when we
solve the IP. (Hint: in the standard form of LP/IP we are minimizing the objective function).

Answer:
Vmax

(b) Now similarly write the constraints and objective function for a minimizing node, where we define a variable
Vmin to represent the value of the minnie node.

Vmin

C1 C2

(i) Write the constraints in inequality form (Hint: there should be two constraints).

Answer:
Vmin − C1 ≤ 0 Vmin − C2 ≤ 0

(ii) Write the objective function to be minimized.

Answer:
−Vmin

2Although technically still within scope, this is a VERY HARD question (part (a-c) should be fine, the rest needs some good
intuition). You are not expected to handle questions at this level of difficulty on your own in any part of this course. The background of
this question is the thought process of a TA trying to design a problem on Minimax as IP but later realizing it is too hard to be anywhere
in the course. It should give you some inspiration on how to approach a problem. For those that are interested, you are encouraged to
think about other smarter ways to convert minimax into an IP.

6

(c) Now that we have two separate IPs for maxie and minnie nodes respectively, we can now put them together to
solve the more complex Minimax problem.

Specifically, we start with the following Minimax tree:

V1

V2 V3

1 2 3 4

(i) First, write the values of the three internal nodes if we run minimax without pruning.

Answer:
V1 = 3 V2 = 1 V3 = 3

(ii) Putting all constraints in part (a) and (b) together, we have the following constraints (you should complete
the omitted constraints when working on the rest of this question).

−V1 + V2 ≤ 0 − V1 + V3 ≤ 0 and the constraints in your part (b)(i)

Since we have two types of objective functions (part (a) and (b)(ii)), and now we want to optimize both
of them, the simplest way to achieve this is to add them together.

Write the objective function for the Minimax tree above using variables V1, V2, V3 (Hint: we are minimiz-
ing this objective, and your expression should include all three variables).

Answer:
V1 − V2 − V3

(iii) The value assignment in part (c)(i) passes all the constraints. Write the value of the objective function
(defined in part (c)(ii)) given this value assignment.

Answer:
−1

(iv) Unfortunately, this naive method of converting minimax to IP does not work. To illustrate this, find
another set of value assignments to V1, V2, and V3 such that:

• V1 is assigned to a different value

• The value assignment passes all the constraints in part (c)(ii)

• The objective function returns the same value for this value assignment as in part (c)(iii)

Write the new assignment in the form of “V1 = some constant V2 = some constant V3 = some constant”

Answer:
Multiple answers, one possibility is V1 = 2 V2 = 1 V3 = 2

Because this new assignment has the same objective value as the correct one in part (c)(i), it is possible
for the IP to return it as the final solution, showing that the current definition of the IP cannot be used
for solving minimax.

You can try to play around with editing constraints and/or the objective function. However, this variable
representation (defining one variable for each node to represent their values) is not expressive enough to solve
the minimax problem.

7

(d) To fix this problem, we should revisit the representation for the maximizing node. Previously we used the
constraints to specify that its value is no less than its children, and used the objective function to represent
that its value is the actual maximum value among its children. Now we should try doing both things with
constraints only.

Revisiting the cost-based search as an IP problem, one way to accomplish this is to define binary variables to
represent each action, such that we can enforce that the value of the parent is the same as one of its children.
So as shown in the figure below, in addition to defining Vmax to represent the value of the maximizing node,
we also define three binary variables x1, x2, x3 to represent whether the corresponding action is chosen (in this
case assume C1, C2, and C3 are constants).

Vmax

C1 C2 C3

x1 x2 x3

We keep the following constraints the same to enforce Vmax must be greater than or equal to its children:

C1 − Vmax ≤ 0 C2 − Vmax ≤ 0 C3 − Vmax ≤ 0

But we also need extra constraints to enforce that Vmax must take the value of one of its children.

(i) Write the constraint(s) to enforce exactly one action is taken at the maximizing node

Answer:

x1 + x2 + x3 ≤ 1

−x1 − x2 − x3 ≤ −1

(ii) Write the constraint(s) to enforce the value of Vmax is the value of the chosen child

Answer:

Vmax − C1 · x1 − C2 · x2 − C3 · x3 ≤ 0

−Vmax + C1 · x1 + C2 · x2 + C3 · x3 ≤ 0

(iii) Explain in 1-2 sentences why this formulation does not work if the children are values of other nodes
(variables) instead of constants (so instead of constants C1, C2, C3 we used variables V1, V2, V3).

Answer:
It won’t work because in that case Vi · xi will be a multiplication between variables, which is not
allowed in LP/IP

(e) Now it’s time to think about a sub-problem, which is how to represent x ·V (where both x and V are variables)
using linear constraints.

This would not be possible in general, but lucky for us, there are additional constraints (listed below) that we
can utilize in the minimax problem so that we can present the multiplication using linear constraints.

• x is binary

• V is bounded (i.e., there is a maximum possible value and a minimum possible value for it)

(i) Note that V represents the value of a node in the minimax tree. Briefly explain why it is bounded.

Answer:
It is bounded by the minimum and maximum value of the leaves

8

(ii) Hence, we can just assume the value of all nodes are bounded in [0, 1] for the rest of this problem. Now
let us introduce a new variable V ′ and enforce V ′ = x · V using linear constraints. First, we observe that
the following are true

V ′ ≤ x and V ′ ≤ V

Write the objective function on V ′ that enforces V ′ = x ·V given the constraints above. (Hint: this should
be very similar to your answer in part (a)

Answer:
−V ′

(f) Returning from the detour, now we have everything we need to represent a maximizing node with other nodes
as children. In the following graph, V0, V1, V2, V3 are the variables representing the values of each node, and
x1, x2, x3 are the binary variables representing whether each action is the chosen option for the node.

V0

V1 V2 V3

x1 x2 x3

(i) Write all the constraints relevant to the V0 node (you should reuse your constraints from parts (d) and
(e)). You may introduce extra variables (e.g., V ′ in part (e)(ii)).

Answer:

−V0 + V1 ≤ 0 − V0 + V2 ≤ 0 − V0 + V3 ≤ 0

V ′
1 ≤ x1 V ′

2 ≤ x2 V ′
3 ≤ x3 V ′

1 ≤ V1 V ′
2 ≤ V2 V ′

3 ≤ V3

V0 − V ′
1 − V ′

2 − V ′
3 ≤ 0 − V0 + V ′

1 + V ′
2 + V ′

3 ≤ 0

x1 + x2 + x3 ≤ 1 − x1 − x2 − x3 ≤ −1

x1, x2, x3 ≤ 1 − x1,−x2,−x3 ≤ 0 xi ∈ Z

The first row ensures V0 is no less than its children. The second row ensures V ′
i = xi · Vi. The

third row ensures the value of the maximizing node is actually the value of the chosen child. The
fourth row ensures exactly one action is chosen. The last row ensures binary variables

(ii) Write the objective function for this maximizing node.

Answer:
−V ′

1 − V ′
2 − V ′

3 or −V0

9

(iii) Identify which constraint(s) you would change if all the nodes are flipped (that is, the root is now a
minimizing node while the children are maximizing), and explain what you would change them to. Also,
explain whether you need to change the objective function, and if so, what it should be changed to.

Answer:
We only need to flip the constraints in the first row (e.g., V0 − V1 ≤ 0). This is because instead of
enforcing the value of the root is no less than the children, now we want to enforce the value of
the children is no greater than the children.
We do not change the rest (including the objective function) because they enforce that the value
of the root node is the same as the value of the chosen child.

(g) Finally, it is time to put everything together again. As we did in part (c), we can use the following steps to
combine the individual IPs of each node:

• Stack all the constraints

• Sum all the objective functions to be the new objective function

However, in part (c), we have seen that adding up all the objective functions did not work. Explain, on a high
level, why the updated representation, especially the objective function, works when combining different nodes
together but not the original naive representation.

Answer:
In the first representation, we are trying to optimize both the minimizing nodes and the maximizing
nodes directly. They have conflicting objectives, dependent on each other, and are unbounded by the
constraints.
For the new representation, the objective function is used to enforce “the value of the parent node is the
same as one of its children”, which is the same for both types of node.

(h) Briefly explain why the integer constraints on the action variables are necessary. Describe what might happen
if we lift those integer constraints.

Answer:
It does not work for LP because LP cannot enforce that the value of the parent node is the value of one
of its children. In the example in part (f)(i), exactly one of the V ′

i equals Vi (i ∈ {1, 2, 3}), the rest are
enforced to be 0. If we lift the integer constraint, more than one V ′

i might be non-zero, so the final value
of V0 might be greater than any of its children’s values.

